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Abstract

The increasing frequency of extreme weather events poses significant socioeco-
nomic challenges, particularly for vulnerable populations in developing countries.
This paper investigates the impact of temperature shocks on intimate partner vi-
olence (IPV) using individual-level data from the 2008 Bolivian Demographic and
Health Survey matched with high-resolution daily climate data. Employing a tem-
perature binning approach, I find substantial heterogeneous effects by altitude: in
low-altitude areas, ten additional days of extreme cold (< 21◦C) or extreme heat
(≥ 33◦C) significantly increase IPV incidence by 3.6 and 2.2 percentage points,
respectively, while moderate cold temperatures ([21, 23)◦C) reduce IPV incidence.
Moreover, cold shocks increase IPV through heightened male alcohol consumption
and income instability, particularly in rural and indigenous communities, while hot
shocks reduce women’s employment in urban, non-indigenous households. Overall,
the results demonstrate that the effects of temperature shocks are highly contextual
and heterogeneous, underscoring the need for climate adaptation policies that are
sensitive to socioeconomic status and gender so that they can contribute to the
broader goal of reducing violence against women.

JEL codes: I14, J12, Q54, O54

Keywords: intimate partner violence; temperature shocks; climate change effects; Latin
America

∗Acknowledgments: I am grateful to Subha Mani, Sophie Mitra, and Andrew Simons for their invalu-
able guidance, feedback, and suggestions. I am also grateful to Claus Pörtner, Shamma Alam, Emily
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1 Introduction

Rising temperatures and the increasing frequency and magnitude of extreme weather

events associated with climate change pose significant economic and social costs. These

impacts are especially grave for low- and middle-income countries (LMICs) that have

weak and often unstable social and economic structures and institutions (Adom, 2024;

International Monetary Fund, 2023). Various studies estimate climate change’s detrimen-

tal effects on economic growth (Dell et al., 2012; Deryugina and Hsiang, 2014), poverty

(Guivarch et al., 2021), productivity (Hsiang, 2016), risk preferences (Purcell, 2021), and

human health (Zhao et al., 2021). A growing body of research also examines how ris-

ing temperatures and changing weather patterns influence aggressive behavior, including

violent crime (Zhao et al., 2024), civil unrest (Hsiang et al., 2011; Stechemesser et al.,

2022), and domestic violence (Evans et al., 2025; Dı́az and Saldarriaga, 2023; Henke and

Hsu, 2020). However, the effects of climate change on intimate partner violence (IPV)

remain understudied, particularly in contexts where social vulnerability, limited legal

protections, and gender inequality amplify the risks faced by women (UN Women, 2022).

Despite decades of policy efforts, IPV remains a pervasive global issue. According to

the World Health Organization, nearly one-third of women aged 15–49 who have ever been

in a long-term relationship report having experienced some form of IPV (WHO, 2021).

Such violence has short- and long-term consequences for women’s health, productivity,

and well-being, and it also affects children’s development, behavior, and future outcomes

(Bedoya et al., 2020; Bhuller et al., 2023; WHO, 2021).

Given growing evidence linking high temperatures to increased aggression and conflict

(Baylis, 2020; Hsiang et al., 2013), it is crucial to understand how temperature shocks

influence IPV, and whether these effects vary across populations with different climatic

and social characteristics. This paper examines the heterogeneous relationship between

temperature and IPV using individual-level data from the 2008 Demographic and Health

Surveys (DHS) for Bolivia, matched with high-resolution daily climate data. Bolivia offers

a unique context to study these effects because its geography spans both tropical lowlands

and mountainous highlands, which differ substantially in climate, economic activity, and
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cultural norms. These natural contrasts allow for a detailed analysis of how climatic

adaptation and social vulnerability shape the relationship between temperature shocks

and IPV.

The empirical strategy builds on previous literature on the health and economic im-

pacts of temperature exposure (Barreca et al., 2016; Burke et al., 2015; Deschênes and

Greenstone, 2011; Evans et al., 2025; Graff Zivin et al., 2018). I construct a set of tem-

perature bins that capture the number of days in the 12 months preceding the survey

with maximum temperatures within each 2◦C range. This approach allows for nonlinear

responses and avoids imposing a restrictive functional form on the relationship between

temperature and IPV. The specification includes month-of-survey and region fixed effects

to account for seasonal patterns and unobserved regional characteristics that may con-

found the estimated effects. This empirical strategy exploits the variation in the timing

of the DHS interviews, comparing individuals within the same region and season who

experienced marginally different temperature days due to variations in the 12-month pe-

riod. Identification relies on the assumption that the timing of the survey interviews is

exogenous to household characteristics and unrelated to local patterns of IPV.

Because Bolivia exhibits significant differences in climate and adaptation capacity

across altitudes,1 I estimate the effect of temperature on IPV separately for low- and

high-altitude regions. The results reveal that differences in climatic adaptation translate

into a strongly heterogeneous relationship between temperature and IPV. In low-altitude

areas, ten more days of extreme cold (< 21◦C) and hot (≥ 33◦C) temperatures increase

IPV incidence by 3.6 and 2.2 percentage points, respectively, while days with moderate

cold temperatures, [21, 23), reduce violence by 6.0 percentage points. In contrast, the

effects in high-altitude areas are small and statistically insignificant, likely reflecting more

stable climates and greater adaptation to cooler temperatures.

Further disaggregation shows that within low-altitude areas, the magnitude and mech-

anisms of these effects differ across demographic groups. Cold temperature shocks in-

crease IPV among rural and indigenous households, largely through declines in household

1A cutoff of 1000 meters above sea level is used to distinguish low- and high-altitude areas.
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wealth and increases in men’s alcohol consumption. Hot temperature shocks, in turn,

raise IPV incidence among urban and non-indigenous households by reducing women’s

employment and increasing daily interactions between partners. These results indicate

that the same climatic shock can have opposite or offsetting effects depending on local

conditions and socioeconomic characteristics.

This paper contributes to the literature on climate change and violence in several

important ways. First, it is the first to document the heterogeneous effects of temper-

ature on intimate partner violence (IPV) and identify the mechanisms through which

they operate. The results show that temperature shocks have context-dependent effects

that vary by altitude, population group, and type of temperature exposure. Second, by

employing a flexible temperature-binning approach with fixed effects, I capture nonlinear

and non-monotonic responses that reveal both cold and hot shocks impact IPV. This

approach, which combines high-frequency climate data with self-reported measures of

IPV, allows for stronger causal inference and overcomes the reporting biases common

in administrative records that often undercount violence within the household (Palermo

et al., 2014). Third, I estimate cumulative effects over the prior year, reflecting more

sustained disruptions in economic and social conditions. To the best of my knowledge,

this is the first study to analyze the causal relationship between temperature and IPV

beyond contemporaneous effects. Together, these contributions provide new evidence on

how climatic adaptation and social vulnerability shape the link between temperature and

IPV.

Most existing studies on temperature and violence assume homogeneous effects of

temperature shocks, masking important differences in exposure and adaptation across

populations (Henke and Hsu, 2020; Mannell et al., 2024; Sanz-Barbero et al., 2018; Zhu

et al., 2023). However, some studies show that the association between temperature and

violent crime is influenced by social and demographic factors (Heilmann et al., 2021;

Mahendran et al., 2021; Xu et al., 2020, 2021). Such differences in vulnerability are also

reflected in the literature on extreme precipitation shocks and IPV, which finds varying

effects of wet and dry shocks across regions (Cools et al., 2020; Dı́az and Saldarriaga,
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2023; Rai et al., 2021; Sekhri and Hossain, 2023). My findings extend this evidence by

highlighting how climatic adaptation and socioeconomic vulnerability jointly determine

the magnitude and direction of the temperature–IPV relationship. The results have

important policy implications for the design of gender-sensitive climate adaptation and

public health programs that consider local climatic and social contexts.

The rest of the paper is organized as follows. Section 2 describes the data used

and discusses the climatic and demographic differences in low- and high-altitude areas.

Section 3 provides the empirical specifications. Section 4 presents the results on all

dimensions of IPV for the high-altitude and low-altitude samples. Section 5 provides

an in-depth analysis of the mechanisms in low-altitude areas. Section 6 discusses the

heterogeneous effects of temperature. Section 7 presents robustness checks. Section 8

concludes with a summary of the findings and offers some policy recommendations.

2 Data

Bolivia presents a unique case study, with several demographic subgroups that experi-

ence the effects of climate change differently. First, the significant differences in altitude

within the country’s regions allow for a separate analysis of populations accustomed to

different climates. This is important because recent studies have found that the effects

of temperature on health outcomes are more likely to be influenced by ‘de-adaption’

to atypical temperatures rather than by the ranges of temperatures that they typically

experience in their areas (Heutel et al., 2021; Helo Sarmiento, 2023). Second, Bolivia’s de-

mographic diversity, with its large rural and indigenous populations, makes it particularly

useful for analyzing those demographic groups that are vulnerable to and disproportion-

ately affected by climate change. Studies show that rural indigenous women are at risk,

both in terms of their vulnerability to climate change (Chapola et al., 2024; Coen, 2021;

Johnson et al., 2022) and their exposure to IPV (Heidinger, 2021; Meekers et al., 2013).

In fact, the large rural and indigenous population of women in Bolivia may explain why

it is one of 19 countries in the world, and the only one in Latin America, where more than
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40% of ever-partnered women have experienced IPV at least once in their lifetime. This

high incidence of IPV makes it easier to capture the marginal effects of high-frequency

variables, such as daily temperature.

To empirically analyze the effect of temperature on IPV, I combine data from two

sources: (1) the 2008 Bolivian Demographic and Health Survey (DHS), and (2) the

ERA5Land dataset provided by the European Center for Medium-Range Weather Fore-

casts (ECMWF).

2.1 Survey Data and Outcome Variables

The IPV data come from the DHS conducted in Bolivia between February and June

of 2008. The 2008 survey is the only Bolivian survey that includes GPS coordinates

at the DHS cluster level, allowing for the alignment of IPV data with climate data.

Also, due to the time of the survey, the period of measurement for IPV (12 months

prior to the survey) covers the effects of La Nina, the Southern Oscillation (ENSO)

effect characterized by cooler temperatures and increased rainfall. This facilitates the

analysis of cold temperature shocks, which are rarely analyzed in the violence literature

(Hsiang et al., 2011). Additionally, the DHS questionnaire on domestic violence is very

comprehensive. Unlike other DHS questionnaires from similar countries like Colombia

and Peru, it includes more questions on psychological abuse, specifying the time period

and the frequency of each act.

The DHS survey randomization happens at the cluster level. A DHS cluster, drawn

from the census data and population density, consists of a village in rural areas or a

few street blocks in urban areas. Within each cluster, twenty households were randomly

selected for the interview. The survey data contains cross-sectional information on the

general characteristics of each household, as well as the sociodemographic and health

status of a representative sample of women 15–49 years old.

Under strict privacy-protection protocols, women who had an intimate relationship

in the year prior to the survey were asked about their experience of intimate partner
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mistreatment, including physical and sexual IPV and psychological abuse.2 The module is

based on a modified and shortened version of the Conflict Tactic Scales (CTS) elaborated

by Straus (1979; 1990), which was designed to minimize definitional bias, provide multiple

opportunities for disclosure, and increase the likelihood of reporting less severe forms of

violence (Garcia-Moreno et al., 2006; Straus et al., 1996; WHO, 2005). The main outcome

variable, IPV Incidence, indicates whether the woman reported that a partner has done

any of the following acts to her in the last 12 months:

1. pushed or tugged

2. hit with the hand or foot

3. hit with an object

4. tried to strangle or burn

5. forced to have unwanted sexual relations

I created several variables to measure the frequency and severity of IPV. The fre-

quency variables, often and sometimes, indicate whether at least one of the acts occurred

often, and whether all of the acts occurred sometimes or once, respectively. The severity

variables are based on the WHO classifications of each act (WHO, 2021). Less severe is

set to 1 if the woman only chose any of the first acts, while Severe equals 1 if the woman

suffered from any of the last three acts.

One of the United Nations’ Sustainable Development Goals (SDG) related to violence

against women, SDG 5.2, includes a target to eliminate all forms of violence against

women and girls, with indicator 5.2.1 specifically measuring psychological violence along-

side physical and sexual violence (UN General Assembly, 2015). Although there is no

internationally standard measure, the Bolivian laws define psychological abuse as situa-

tions of controlling behavior (Coa and Ochoa, 2009). In the Domestic Violence module

of the DHS, respondents were asked whether their partner exhibited each of the following

eight behaviors in the past 12 months: accused her of unfaithfulness, was jealous of other

men, limited contact with her family, humiliated or insulted her3, threatened to aban-

2In this paper, the IPV definition includes physical and sexual violence. Since there is no standardized
measure of psychological abuse, including it as part of IPV would limit the external validity of the results.

3Examples given for this question included the expressions: “You’re useless”, “You never do anything”,
“You’re so dumb”, and “My mom used to do things better for me”.
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don her, threatened to take her children, threatened to stop economic support, or broke

household objects in anger. I use this question to create an indicator of psychological

abuse, which is equal to 1 if the woman experienced at least one of these behaviors.

Since this paper focuses on women who are in a long-term relationship and could

be exposed to IPV, I limited the sample to respondents who were partnered (mar-

ried/cohabiting) at the time of the survey and shared a household with their partners.

Due to the time period specified by the IPV question and to ensure that the temperature

shocks are correctly assigned, I dropped all women who have lived in the current location

for less than a year. The final sample consists of 9,812 women. To capture differences in

climate based on altitude, I also created two subsamples, low- and high-altitude, using

1000 meters above sea level as the cutoff (Dı́az and Saldarriaga, 2023; Helo Sarmiento,

2023).

Table 1 summarizes the demographic characteristics of the full country sample and

the two altitude subsamples. Column (1) shows that the average woman in the sample

is 33 years old and has completed an average of 7.5 years of schooling. More than a

third of the sample lives in rural areas, and 23 percent work in agriculture. Also, 64%

of the sample has indigenous ethnicity, reflective of the large indigenous communities in

the country. About a quarter of the women in the sample were victims of IPV, with 10%

of them suffering from severe forms of IPV and 4% experiencing it often. Additionally,

42% of women suffered from psychological abuse.

Columns (2) and (3) of Table 1 show that the altitude subsamples are demographically

different. Compared to women in the high-altitude areas, the respondents in the low-

altitude areas are less likely to be rural, more likely to work in agriculture, and more

likely to identify themselves as indigenous. They also have more years of education,

on average. While IPV incidence is lower in low-altitude areas, psychological abuse is

higher. These statistically significant demographic differences, combined with substantial

regional variation in temperature exposure described in the next section, provide a basis

for differentiating the effects of temperature shocks on violence between low- and high-

altitude areas.
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Table 1: Summary Statistics by Altitude

(1) (2) (3) (4)
Full Low High Difference

Country Altitude Altitude (3)− (2)

IPV Incidence 0.26 0.23 0.27 0.05∗∗∗

(0.01)
Often 0.04 0.04 0.04 0.01

(0.00)
Severe physical IPV 0.10 0.09 0.11 0.01

(0.01)
Psychological abuse 0.42 0.45 0.41 −0.03∗

(0.01)
Rural 0.38 0.26 0.44 0.17∗∗∗

(0.01)
Age (years) 33.44 32.54 33.87 1.33∗∗∗

(0.23)
Indigenous Ethnicity 0.64 0.37 0.76 0.39∗∗∗

(0.01)
Schooling years completed 7.58 8.32 7.23 −1.08∗∗∗

(0.13)
Worked in the past 12 months 0.75 0.71 0.77 0.06∗∗∗

(0.01)
Works in agriculture 0.23 0.11 0.28 0.17∗∗∗

(0.01)

Observations 9812 3479 6309

Notes: The sample is restricted to women currently partnered and have lived at their current
location for at least one year. The Low Altitude sample consists of all the observations
located in DHS clusters with altitude less than 1000m above sea level. High altitude is all
the remaining clusters. Standard errors in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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2.2 Weather Data

Temperature and precipitation data come from the ERA5-Land dataset, which uses

observation data and climatic models to obtain reanalysis data available on a 0.1◦ × 0.1◦

(approx. 10km) quadrilateral grid from January 1980 to present. Estimates from the

reanalysis data have been used extensively in the economics literature. This is because

they are regarded as the most consistent estimates of weather in a grid cell, compared to

other measures that only use observational data, especially for areas with low coverage

from weather stations (Auffhammer et al., 2013). Each survey cluster is matched to the

closest cell on the grid using the GPS coordinates provided by the DHS. One caveat of

this method is that the DHS coordinates are provided with a random displacement error

to ensure individuals’ anonymity, and thus, the assignment of weather variables could

be misaligned with the next corresponding grid cell. That is, the analysis relies on the

assumption that the difference in the daily maximum temperature between neighboring

grid cells is statistically insignificant.

I transformed the hourly data into daily data by taking the maximum temperature

and the total accumulation of precipitation for each day. Figure 1 shows the population-

weighted distribution of maximum temperature in Bolivia over the two-year period of

interest, 2007–2008. The height of each bar represents the number of days in which

the average maximum temperature was in the respective bin. The figure depicts a key

feature of tropical nations: the temperature range over the year is narrow due to the lack

of seasonality. Therefore, unlike previous literature that used 5◦C or 10◦F temperature

bins, the main empirical analysis of this paper relies on 2◦C temperature bins to capture

enough spatial and temporal variation (Garg et al., 2020; Helo Sarmiento, 2023). In

doing so, I am following the research by Helo Sarmiento (2023), who studied the effect of

temperature on mortality in Colombia, another tropical country in South America.
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Figure 1: Distribution of Daily Maximum Temperature by Altitude

Notes: Each bar represents the number of days the population-weighted daily maximum tem-

perature fell within the corresponding 2◦C range (bin width = 2◦C). Population weights are

based on DHS cluster counts, defined as the number of individuals within 2 km (urban) or 10

km (rural) of each cluster, using the national census closest to 2010. The histograms cover

daily maximum temperatures from January 2007 to December 2008.

Due to Bolivia’s location within the Andes Mountain range and its proximity to the

equator, another important characteristic of this country is that its temperatures depend

on altitude instead of seasonal patterns. Figure 2 depicts the difference in the range

of daily maximum temperatures between the low- and high-altitude subsamples. While

mountainous, high-altitude areas rarely experience temperatures above 23◦C, the aver-

age daily maximum temperature in the lowlands is 27◦C. The low-altitude areas also

experience a wider range of temperatures with more outliers on the colder side. The

left-skewed distribution reflects occasional cold fronts, locally known as surazos, which

originate in Patagonia and can reach the Bolivian lowlands (Garreaud, 1999; Lanfredi

and de Camargo, 2018).
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Figure 2: Distribution of Daily Maximum Temperature by Altitude

Notes: Each bar represents the number of days the population-weighted daily maximum tem-

perature fell within the corresponding 2◦C range (bin width = 2◦C). Population weights are

based on DHS cluster counts, defined as the number of individuals within 2 km (urban) or 10

km (rural) of each cluster, using the national census closest to 2010. The histograms cover

daily maximum temperatures from January 2007 to December 2008. Low altitude is defined

as clusters below 1,000 m above sea level, and high altitude as clusters at or above 1,000 m.

3 Empirical Specification

In line with the standard approach in environmental economics, I employ a flexible

parametric model that uses discrete temperature bins to estimate the temperature effect.

This specification captures potential nonlinearities and avoids restrictive functional-form

assumptions (Deschênes and Greenstone, 2011; Ranson, 2014).4

Yicm = α +
T∑

j=1

βjTMAXicm + νPicm + η′Zicm + κc + γm + εicm (1)

Yicm is the outcome variable for individual i in region c in month m. The key variables

of interest, TMAXicm, is a series of 2◦C bins: < 11, [11, 13), ..., [31, 33),≥ 33. Each bin j

indicates the number of days in the previous 12 months in which the maximum tempera-

ture is within the jth range. Since the survey was conducted from February to June 2008,

4Results remain robust when using a probit specification. A detailed discussion comparing probit
estimates and the rationale for using the Linear Probability Model (LPM) as the primary specification
is provided in Section 7.3.
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this variable leverages the variation in the interview date. Thus, for each observation, bin

j denotes the number of days experienced by individual i in the corresponding 365 days

prior to the survey. Since for all observations the number of days across all temperature

bins adds up to 365, the bin [21, 23)◦C is omitted and used as the reference category.

Thus, βj is interpreted as the effect on IPV from one more day in the jth bin (relative to

the omitted category), based on exposure in the 12 months prior to the survey.

Picm is the total accumulated precipitation in the previous 12 months. It is used

as a control variable, given previous evidence of the high correlation between tempera-

ture and precipitation, as well as between extreme precipitation shocks and IPV (Dı́az

and Saldarriaga, 2023; Sekhri and Storeygard, 2014). Zicm is a set of demographic and

day-of-interview controls. Demographic factors include age, rural status, ethnicity, and

education. Additionally, I control for the maximum temperature on the day of the survey

to capture any short-term effects that temperature could have on survey response, due to

recall or cognitive performance (Gaoua, 2010; Pilcher et al., 2002; Sharma et al., 1985), or

interviewer productivity (LoPalo, 2023). Similarly, I include a morning-survey indicator

to control for any possible measurement error arising from the time of the day at which

the interview is conducted. Previous evidence suggests that women are more likely to

self-report IPV in the morning, since the risk of retaliation increases with time of day

(Theiss, 2024).

Finally, κc and γm are region and month-of-survey fixed effects. κc captures any time-

invariant observed and unobserved region-specific characteristics, while γm controls for

any possible seasonal patterns in IPV reporting. Standard errors are clustered at the DHS

cluster level. To match the survey design and ensure representativeness at the country

level, all observations are weighted using the DHS sample weights.

The empirical strategy relies on the identification assumption that the temperature

bins are orthogonal to individual characteristics, ensuring that exposure to each temper-

ature bin is as good as randomly determined among respondents. To empirically test

this assumption, I estimate equation (1) using demographic characteristics that are not

expected to be systematically affected by the previous year’s temperature, including age,
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height, years of schooling, and indigenous ethnicity.

Tables A.1 and A.2 present the results for the low- and high-altitude samples, respec-

tively.5 The temperature bins are uncorrelated to age, height, and years of schooling

for both samples. Parental IPV is also uncorrelated with temperature bins in high-

altitude areas, although in low-altitude areas, the coefficients for the moderate tempera-

ture shocks, [21, 23) and [31, 33), are statistically significant. The significant coefficients,

however, could be due to spurious correlation, as the Type I error increases with the

number of outcomes estimated. Following Benjamini et al. (2006), I calculate sharpened

False Discovery Rate (FDR) q-values for the temperature bins in each table. Most co-

efficients do not survive multiple-testing adjustment at the 10% level, and thus, there is

no evidence of systematic imbalance.

As an additional validity check, I examine whether the timing of survey interviews

was correlated with respondents’ observable characteristics. This test assesses whether

data collection within each region and survey month was systematically related to demo-

graphic composition, which could indirectly bias the temperature exposure distribution.

Specifically, I regress each demographic characteristic on the number of days since the

start of fieldwork, controlling for region and month-of-interview fixed effects. Tables A.3

and A.4 report the results for the low- and high-altitude samples, respectively. In the

low-altitude sample, coefficients on interview timing are small and statistically insignifi-

cant across outcomes. In the high-altitude sample, the coefficient for years of schooling

is negative and statistically significant at the 1 percent level. However, other observables

are not significantly associated with interview timing. Overall, the evidence indicates a

limited association between survey timing and respondent composition, with one signif-

icant relationship for schooling in high-altitude areas. For the low-altitude sample, the

results suggest that the within-region-month timing of interviews was as good as random

with respect to respondent demographics, supporting the exogeneity of survey timing and

temperature exposure around the interview date.

5Balance-check results for the full national sample are reported in Appendix B, Table B.1. The
extreme temperature bins are largely uncorrelated with demographic characteristics.
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4 Results

As discussed earlier, due to its location within the Andes and its varied topography,

large portions of the country sit at altitudes above 1,000 meters, with some areas exceed-

ing 3,000 meters above sea level. This significant altitudinal variation leads to substantial

differences in climatic conditions across regions, shaping both temperature exposure and

population adaptation, and resulting in heterogeneous behavioral responses to weather

shocks. To capture these effects more accurately, I stratify the sample into low- and

high-altitude groups, using a cutoff of 1,000 meters above sea level.6 The bin structures

for each altitude subsample are adjusted to reflect their distinct climatic ranges, enabling

more meaningful comparisons relative to local norms of temperature exposure.

I estimated the effect of temperature on IPV for each altitude subsample using equation

(1), but with distinct sets of temperature bins. Specifically, the low-altitude bins are set as

follows: < 21, [21, 23), . . . , [31, 33),≥ 33, with [27, 29) as the reference bin. For the high-

altitude subsample, the bins are: < 11, [11, 13), . . . , [19, 21),≥ 21, with [15, 17) as the

reference category. These reference bins were chosen based on the population-weighted

average maximum temperatures observed during 2007–2008 (Figure 2).

The results for IPV incidence by altitude category are shown in Figure 3. The point

estimates for the high-altitude subsample are all very small and statistically insignificant,

even at the 10 percent level. Thus, there is no evidence of a temperature effect on IPV

incidence in the mountainous, high-altitude areas of Bolivia. Since the climate of this

subsample is generally cooler and rarely reaches temperatures above 23◦C, it is possible

that individuals were not exposed to temperatures sufficiently high to affect temperament

and intrafamily interactions over the preceding year.

In contrast, for the low-altitude subsample, the effect of temperature on IPV incidence

seems to be nonlinear. While extremely cold and hot days have a significantly positive

effect on IPV, relative to the reference bin, days with moderate temperatures have a

6Results for the full national sample are provided in Appendix B for reference. These aggregate
estimates show no statistically significant effect of temperature on IPV incidence. However, due to
the climatic differences between regions, such point estimates may obscure the heterogeneous effects of
temperature and its associated mechanisms.
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negative effect on the incidence of IPV. The colder temperature bins, however, tend to

have larger coefficients than the hotter temperature bins, implying that the population

in low altitudes is more susceptible to cold shocks.

This difference between low- and high-altitude areas may be a result of the distribu-

tion of temperatures experienced by each area. While high-altitudes experienced a narrow

range of temperatures (between 9◦C and 23◦C) with few outliers, the low-altitude areas

had a wider range of temperatures (between 13◦C and 37◦C). The lowlands experienced

the effect of the cooler Southern Oscillation (ENSO) climate pattern, La Niña, between

November 2007 and April 2008, which brought about outlying cold days (Climate Pre-

diction Center, 2008; Global Facility for Disaster Reduction and Recovery, 2008). Due

to their infrequency, low-altitude areas may be ‘de-adapted’ to such colder temperatures

(Heutel et al., 2021). Additionally, they experienced high temperatures, which previous

research has shown to be associated with increased violence (Zhao et al., 2024).
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Figure 3: Estimated Effect of Temperature on IPV Incidence by Altitude

Notes: Low altitude is defined as clusters below 1,000 m above sea level, and high altitude as

clusters at or above 1,000 m. Dots show the coefficients estimated using equation (1); lines are

95% CI with SEs clustered at the DHS cluster level. Coefficients are scaled by 100 (percentage

points) and represent the marginal effect of one extra day in each 2◦C bin relative to the

omitted bin [21, 23)◦C. Controls include 12-month precipitation, age, rural status, ethnicity,

education, survey-day max temperature, and morning-survey indicator. Region and month

fixed effects also included.

Given that only the low-altitude areas experience sufficient temperature shocks to have

a detrimental impact on IPV incidence, I further investigate the effect of temperature

on other dimensions of IPV for this subsample only.7 Table 2 shows the point estimates.

As presented in columns (2)–(4), the sign of the coefficients remains the same for all

temperature bins across all levels of severity. Exchanging a day in the reference bin

for a day in the extreme cold or hot bins, < 21◦C and ≥ 33◦C, increases all levels of

IPV. However, only the point estimates for severe IPV are significant (p-value < 0.10),

indicating that ten extra days with extreme temperatures increase the likelihood of severe

IPV by 2.0 percentage points, relative to the omitted category.

The point estimates for < 21 and [23, 25) in column (5) reveal that ten extra days in

each bin increase the proportion of women who report suffering from IPV only sometimes

7A similar analysis for high-altitude areas can be found in Appendix A.
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by 4.4 and 4.6 percentage points, respectively, relative to the reference bin. These changes

are not offset by the statistically insignificant decrease in the proportion of women who

report suffering from IPV often after experiencing days in the same bins, suggesting that

the increase in IPV incidence due to experiencing such temperatures arises from new

cases of IPV, instead of shifts in frequency. Similarly, exposure to ten extremely hot

days, ≥ 33◦C, increases reports of experiencing IPV only sometimes by 2.8 percentage

points, which is not offset by the reduction in reports of women suffering from violence

often.

Table 2: Temperature Effect in All Dimensions of IPV – Low Altitude

(1) (2) (3) (4) (5) (6)
IPV IPV Severity IPV Frequency Psychological

Incidence Less severe Severe Sometimes Often Abuse

< 21 (%) 0.36∗∗∗ 0.16 0.20∗ 0.44∗∗∗ -0.08 0.30∗

(0.14) (0.10) (0.12) (0.13) (0.05) (0.17)
[21, 23) (%) -0.60∗∗∗ -0.33∗ -0.28 -0.46∗∗ -0.14 -0.43∗

(0.22) (0.18) (0.17) (0.23) (0.10) (0.25)
[23, 25) (%) 0.34∗∗ 0.27∗∗ 0.07 0.46∗∗∗ -0.11 0.36∗

(0.16) (0.11) (0.10) (0.15) (0.09) (0.18)
[25, 27) (%) -0.19 -0.16 -0.02 -0.02 -0.17∗∗ -0.06

(0.16) (0.13) (0.14) (0.17) (0.07) (0.18)
[27, 29) omitted category
[29, 31) (%) 0.15 0.03 0.12 0.31∗∗ -0.16∗∗∗ 0.30∗

(0.15) (0.10) (0.14) (0.15) (0.06) (0.17)
[31, 33) (%) -0.26 -0.04 -0.22 -0.10 -0.16∗∗ 0.10

(0.17) (0.13) (0.15) (0.17) (0.07) (0.18)
≥ 33 (%) 0.22∗ 0.01 0.21∗ 0.28∗∗ -0.07 0.20

(0.11) (0.10) (0.12) (0.12) (0.04) (0.15)

Observations 3476 3476 3476 3476 3476 3476
R-squared 0.0402 0.0329 0.0228 0.0445 0.0317 0.0377

Notes: The coefficients in this table represent the marginal effect in percentage points of experiencing
one more day in the respective bin, relative to the omitted bin. The sample is restricted DHS clusters
with an elevation less than 1000m above sea level. All regressions include controls for: total accumulated
precipitation in the previous 12 months, age, rural status, ethnicity, education, maximum temperature
on the day of the survey, and a morning-survey indicator. They also include region and month-of-survey
fixed effects. Standard errors are clustered at the DHS cluster level and shown in parentheses. The
omitted temperature bin is [27, 29)°C. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

To verify that spatial dependence in the regression residuals does not bias the low-

altitude estimates, I compute global Moran’s I statistics using cluster-level residuals from

equation 1. The tests use inverse-distance spatial weights within 100, 150, and 200 km

radii based on DHS cluster coordinates. At shorter distances (50 km), a large share of

clusters have no spatial neighbors (“islands”), so those results are excluded. The results
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are presented in Table A.5. Across the 100–200 km thresholds, Moran’s I values are

small (|I| < 0.05) and statistically insignificant (p > 0.10) for all IPV outcomes. The

only marginal case is the overall IPV measure at 100 km (I = −0.04, pperm = 0.07), which

indicates weak and statistically uncertain spatial dependence that is not robust across

larger radii. These findings suggest that the estimated temperature–IPV relationships

are not driven by spatially correlated unobservables, and that cluster-robust standard

errors appropriately account for local dependence.

5 Mechanisms in Low-Altitude Areas

There are different possible mechanisms by which temperature impacts IPV in low-

altitude areas. They are discussed in this section.

5.1 Alcohol Consumption

Alcohol-induced IPV is one of the most common forms of violence against women in

Latin American countries (Angelucci, 2008; Dı́az and Saldarriaga, 2023). Temperature

shocks could influence men’s drinking behavior, adding to alcohol consumption patterns

associated with cultural norms and financial distress. Extreme temperatures could lead

to increased drinking due to changes in social interactions, such as spending more time

indoors because of cold temperatures. Alcohol could also be used to reduce stress during

temperature shocks that affect income stability and mental health. Although an empirical

analysis of the relationship between temperature and alcohol consumption is beyond the

scope of this study due to data limitations, I use a more direct variable to estimate

alcohol-related violence. Based on the women’s reports, I constructed an indicator for

whether the partner was intoxicated when the violence occurred. Column (1) of Table 3

shows that the relationship between temperature bins and alcohol-induced IPV follows

the same pattern as overall IPV incidence (presented in Table 2), with the coldest bin

having a positive effect and a moderate cold shock having a negative one. The results

indicate that ten days in the < 21 bin increases the likelihood of alcohol-induced IPV by
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4 percentage points, relative to the reference bin. However, moderately cold days with

a maximum temperature in the [21, 23) have fewer alcohol-induced cases of violence, by

5.3 percentage points. Furthermore, the point estimates for the two coldest temperature

bins are larger for alcohol-induced IPV than for total IPV incidence. This suggests that

men’s alcohol consumption is a key driver of the relationship between cold temperature

shocks and violence.

Conversely, column (2) of Table 3 shows that only the extreme temperature bins have a

positive relationship with the probability of a woman indicating she drinks alcohol, while

milder temperatures have a negative relationship. However, the point estimates are not

statistically significant, even at the ten percent level. While this does not rule out that

temperature shocks influence the frequency of women’s alcohol consumption, it provides

conditional evidence that women’s behavior is not significantly affected by temperature

shocks.
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Table 3: Alcohol Consumption

(1) (2)
Partner drunk during IPV Drinks alcohol

< 21 (%) 0.40∗∗∗ 0.07
(0.11) (0.18)

[21, 23) (%) -0.53∗∗∗ -0.30
(0.18) (0.31)

[23, 25) (%) 0.11 -0.17
(0.12) (0.24)

[25, 27) (%) -0.11 -0.30
(0.11) (0.21)

[27, 29) omitted category
[29, 31) (%) 0.08 -0.21

(0.09) (0.18)
[31, 33) (%) -0.14 -0.23

(0.11) (0.21)
≥ 33 (%) 0.12∗ 0.18

(0.07) (0.16)

Observations 3476 3474
R-squared 0.0284 0.0295

Notes: The coefficients in this table represent the marginal effect in
percentage points of experiencing one more day in the respective bin,
relative to the omitted bin. The sample is restricted to DHS clusters
with an elevation less than 1000m above sea level. All regressions include
controls for: total accumulated precipitation in the previous 12 months,
age, rural status, ethnicity, education, maximum temperature on the day
of the survey, and a morning-survey indicator. They also include region
and month-of-survey fixed effects. Standard errors are clustered at the
DHS cluster level and shown in parentheses. The omitted temperature
bin is [27, 29)°C. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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5.2 Norms and Attitudes

One of the determining factors of IPV is societal norms (Flake and Forste, 2006; Heise

and Kotsadam, 2015; Obot and Room, 2005). Thus, I posit that, in addition to an

increase in violence in society, such as crime and political unrest, temperature shocks

could affect IPV incidence through a change in norms, particularly those related to the

acceptance of violence (La Mattina, 2017; Steenkamp, 2005). To test this hypothesis,

I built an index of women’s “wife-beating attitudes”, which indicates the number of

circumstances (0 to 5) that the respondent finds acceptable for partner abuse: going out

without telling her partner, neglecting the children, arguing with him, refusing to have

sex with him, and burning the food. The point estimates for this index are presented

in Table 4. The coefficients for all the temperature bins are small and not significant,

suggesting that women’s acceptance of wife-beating is not affected by temperature.
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Table 4: Women’s Attitudes About Violence

(1)
Wife-beating Index

< 21 0.0005
(0.0044)

[21, 23) -0.0012
(0.0082)

[23, 25) -0.0030
(0.0057)

[25, 27) -0.0005
(0.0040)

[27, 29) omitted category
[29, 31) -0.0009

(0.0042)
[31, 33) 0.0032

(0.0050)
≥ 33 -0.0044

(0.0028)

Observations 3475
R-squared 0.0800

Notes: The coefficients in this table rep-
resent the marginal effect of experiencing
one more day in the respective bin, rela-
tive to the omitted bin. The sample is
restricted to DHS clusters with an eleva-
tion less than 1000m above sea level. The
regression includes controls for: total ac-
cumulated precipitation in the previous 12
months, age, rural status, ethnicity, educa-
tion, maximum temperature on the day of
the survey, and a morning-survey indicator.
It also includes region and month-of-survey
fixed effects. Standard errors are clustered
at the DHS cluster level and shown in paren-
theses. The omitted temperature bin is [27,
29)°C. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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5.3 Changes in Labor Market Outcomes

Since this research focuses on the 12-month period, there could be pathways that are

not contemporaneous. For example, climate has an effect on income, particularly for

families that depend on agricultural yields (Deryugina and Hsiang, 2014; Lobell et al.,

2011). Changes in labor and earnings can alter women’s bargaining power and increase

the likelihood of IPV, as men use violence to extract resources from women or to re-

establish power in the relationship (Bloch and Rao, 2002; Bobonis et al., 2013; Calvi and

Keskar, 2023). Additionally, as financial instability and stress increase, violence may be

used as an emotional release (Angelucci, 2008; Buller et al., 2016; Jewkes, 2002). For

example, previous literature has found that recent precipitation shocks, such as floods

and droughts, can increase IPV incidence over subsequent months. (Dı́az and Saldarriaga,

2023).

To empirically measure the effect of temperature on bargaining power, I use the respon-

dent’s and her partner’s labor market outcomes over the last year prior to the interview.

The results in Table 5 suggest that hot and cold temperature shocks affect labor market

outcomes differently. Column (1) suggests that only extreme heat impacts the probability

that the respondent has a job. Ten extra days in the [31, 33) and ≥ 33 bins change the

probability of the women having a job by 4.0 and -3.1 percentage points, respectively.

However, both of these coefficients are significant at the ten percent level only. Similarly,

Column (4) shows that extra days in the hottest temperature bin also decrease the prob-

ability that the partner has a job. Although this coefficient is not statistically significant

even at the ten percent level, the effect may not be fully captured due to the high rate

of men’s labor participation, with 99% of partners having a job.

While extreme cold days do not have a significant effect on job incidence, they do

affect the type of jobs women and their partners have. On the one hand, Columns (3)

and (5) show that ten extra days with temperatures below 21◦C decrease the likelihood

that both women and men work in the non-agricultural manual sector by 2.0 and 4.9

percentage points, respectively. On the other hand, agricultural employment goes up

due to extreme cold shocks, though differently for women and men. Women increase
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their self-employment in agriculture, while men increase their work for an employer in

an agricultural enterprise. Interestingly, the < 21 bin is the only one that has a positive

effect on women’s agricultural self-employment. The gradient in women’s agricultural

self-employment for a moderate cold shock, [21, 23), is negative and significant. For

every ten extra days with maximum temperature in the [21, 23) range, the probability

that the woman is self-employed in agriculture decreases by 8.4 percentage points. The

effect of the two coldest bins on women’s agricultural self-employment aligns with the

pattern in IPV incidence presented in Table 2. This suggests that extreme cold increases

household reliance on agriculture, thereby raising their vulnerability to income shocks,

which may partially explain the corresponding rise in IPV.

Table 5: Temperature Effects on Labor Market Outcomes

Panel A: Women’s Outcomes Panel B: Partner’s Outcomes

(1) (2) (3) (4) (5) (6)
Worked last year Agric self-emp. Non-Ag Manual Husband works Agric employee Non-Ag Manual

< 21 (%) 0.00 0.49∗∗∗ -0.20∗∗ 0.03 0.11∗∗ -0.52∗∗

(0.16) (0.19) (0.10) (0.03) (0.05) (0.22)
[21, 23) (%) 0.12 -0.84∗∗∗ 0.16 -0.03 -0.01 0.64∗

(0.23) (0.30) (0.17) (0.04) (0.09) (0.38)
[23, 25) (%) 0.08 -0.42∗∗ 0.06 0.03 0.07 -0.19

(0.16) (0.18) (0.12) (0.02) (0.06) (0.19)
[25, 27) (%) -0.12 -0.01 -0.19∗ 0.02 0.11∗∗ -0.17

(0.17) (0.13) (0.10) (0.03) (0.05) (0.19)
[27, 29) (omitted) omitted category omitted category
[29, 31) (%) -0.12 -0.33∗∗∗ -0.00 0.03 0.13∗∗ -0.07

(0.17) (0.12) (0.09) (0.03) (0.05) (0.17)
[31, 33) (%) 0.40∗ -0.13 -0.01 0.06 0.05 -0.36∗

(0.22) (0.16) (0.15) (0.04) (0.06) (0.20)
≥ 33 (%) -0.31∗ -0.02 -0.12 -0.06 0.06 0.02

(0.17) (0.09) (0.10) (0.04) (0.04) (0.15)

Observations 3476 3476 3476 3470 3470 3476
R-squared 0.0888 0.2732 0.0164 0.0133 0.0526 0.0934

Notes: The coefficients in this table represent the marginal effect in percentage points of experiencing one more day in the respective bin, relative to
the omitted bin. The sample is restricted to DHS clusters with an elevation less than 1000m above sea level. All regressions include controls for: total
accumulated precipitation in the previous 12 months, age, rural status, ethnicity, education, maximum temperature on the day of the survey, and a
morning-survey indicator. They also include region and month-of-survey fixed effects. Standard errors are clustered at the DHS cluster level and shown
in parentheses. The omitted temperature bin is [27, 29)°C. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Other temperature bins also decrease the probability of women’s self-employment in

agriculture, which could indicate that only extreme temperature shocks impact women’s

bargaining power. Lack of a job in hotter temperatures or the shift to self-employment

due to colder shocks could affect the woman’s resources relative to those of her partner. If

a woman earns less than her husband, she may not be able to leave the relationship, and
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thus, she would have low bargaining power and be vulnerable to abuse. I use two proxy

variables to measure bargaining power: comparative earning capacity and a decision-

making index. The former, “earns same or more than partner”, is an indicator variable

based on women’s reports. The latter is a count of how many out of six household

decisions she is involved in, including: how to spend her earnings, health care, making

large purchases, making daily household purchases, visiting family or relatives, and how

to spend his earnings.

The results are presented in Table 6. The coefficients in Column (1) indicate that

relative to the reference bin, women who spend ten more days in the hottest bin, ≥ 33,

are 4.0 percentage points less likely to earn the same or more than their partner. This

is reflective of the decrease in women’s participation in the labor market for the same

bin, as presented in Table 5. In contrast, none of the coefficients on the decision-making

index, presented in Column (2), are statistically significant even at the ten percent level.

This suggests that none of the labor or earnings changes due to temperature shocks have

a significant impact on the woman’s power within the relationship.
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Table 6: Bargaining Power Proxies

(1) (2)
Earns ≥ partner’s Decision-making

earnings Index

< 21 0.07 -0.0028
(0.16) (0.0053)

[21, 23) -0.47 0.0059
(0.29) (0.0079)

[23, 25) -0.28 -0.0049
(0.19) (0.0057)

[25, 27) -0.39∗∗ 0.0028
(0.16) (0.0053)

[27, 29) omitted category
[29, 31) -0.33∗∗ -0.0020

(0.17) (0.0057)
[31, 33) 0.07 0.0071

(0.20) (0.0078)
≥ 33 -0.40∗∗ -0.0045

(0.15) (0.0057)

Observations 3476 3476
R-squared 0.1099 0.0671

Notes: The coefficients in this table represent the marginal ef-
fect of experiencing one more day in the respective bin, relative
to the omitted bin. Column (1) presents the coefficients in per-
centage points. The sample is restricted to DHS clusters with
an elevation less than 1000m above sea level. All regressions in-
clude controls for: total accumulated precipitation in the previ-
ous 12 months, age, rural status, ethnicity, education, maximum
temperature on the day of the survey, and a morning-survey
indicator. They also include region and month-of-survey fixed
effects. Standard errors are clustered at the DHS cluster level
and shown in parentheses. The omitted temperature bin is [27,
29)°C. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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One caveat, however, is that the questions used for building the decision-making index

do not specify a timeframe, e.g., who has the final say on large household purchases?

Thus, it is likely that women are answering based on their most recent interactions.

If the temperature shock only affected the woman’s earnings or decision-making power

temporarily, this proxy would not fully reflect the impact of temperature on bargaining

power beyond the immediate period of the shock.

In addition to extreme temperature shocks affecting labor outcomes, moderate tem-

peratures also have an impact. Extra days in the [25, 27) and [29, 31) bins have a positive

gradient in the partner’s agricultural employment, while a negative gradient is observed

in the “earned same or more” variable. This means that during moderate shocks, men

are more likely to be employed in agriculture and earn more than women. However, as

shown in Table 2, this shift in income does not seem to impact IPV incidence signifi-

cantly. It is possible that agricultural yields thrive during these moderate temperatures,

improving the household’s economic stability. This mechanism is discussed in further

detail in Section 6.1 for rural areas. However, empirical testing of such a hypothesis is

beyond the scope of this paper.

6 Heterogeneous Effects and Mechanisms in Low-

Altitude Areas

There are other factors, besides differences in altitude, that can influence the rela-

tionship between temperature and IPV. For example, if one of the mechanisms by which

temperature impacts violence is changes in agricultural labor (as shown in Section 5.3),

then it is expected that the rural population will be more affected by temperature than

the urban population. In this section, I examine the potential heterogeneous effects of

temperature in low-altitude areas, comparing rural and urban residence status, as well

as the indigenous population.
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6.1 Rural Areas

Table 7 presents the results for the rural subgroup. Similar to the entire low-altitude

sample, Column (1) shows that colder bins have a non-monotonic, significant effect on

IPV incidence. Specifically, relative to the omitted category, exposure to ten extra days in

the < 21 and [23, 25) bins increases the probability of violence by 4.4 and 4.9 percentage

points, respectively. Meanwhile, ten extra days in the [21, 23) bin decreases the proba-

bility of IPV by 5.9 percentage points. This pattern remains consistent in both levels of

severity. This suggests that there is no change in severity level due to the temperature,

and thus, the increase in incidence is due to new cases of IPV, especially the less-severe

type of violence.

I explore three factors that could determine the relationship between temperature and

violence: partner’s alcohol consumption during IPV events, the likelihood that the women

work, and the household’s wealth index. Columns (5)–(7) show the point estimates

for each of these variables, in the respective order. The results suggest that it is not

one specific determinant that drives the effect of temperature on violence. Additional

exposure to the coldest bin, < 21◦C, increases the likelihood of alcohol-induced IPV, while

decreasing the household’s wealth and the probability that the woman will be at home

during the day. Thus, extremely cold days were highly disruptive to daily life, affecting

men’s alcohol consumption, causing economic distress, and reducing exposure between

couples. Meanwhile, days in the ≥ 33◦C bin also significantly decreased household wealth

in a similar magnitude to days in the < 21◦C bin, but such extremely hot days did not

lead to a statistically significant positive effect in IPV incidence or its severity.

Additionally, neither of the three mechanisms explored fully explains the effect of the

mild cold temperatures on IPV. Ten extra days in the [21, 23) bin lead to a decrease in

alcohol-induced violence by 3.2 percentage points, relative to the omitted bin. However,

this estimate is only significant at the ten percent level, and is much smaller in magnitude

than the 5.9 percentage points decrease in overall IPV incidence. Similarly, although the

results in the [23, 25) bin suggest an increase in new incidences of IPV, the effect on

alcohol-induced violence is close to zero. These findings indicate that men’s alcohol
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consumption is not a significant driver of violence during moderate temperature changes,

and thus, other factors must be at play.

Table 7: Temperature Effect in Rural Areas – Low Altitude

(1) (2) (3) (4) (5) (6)
IPV IPV Severity Partner Drunk At home Household

Incidence Less Severe Severe During IPV During Day Wealth Index
(%) (%) (%) (%) (%)

< 21 0.44∗∗∗ 0.31∗∗∗ 0.12 0.31∗∗∗ -0.87∗∗∗ -0.0013∗∗

(0.16) (0.11) (0.10) (0.11) (0.26) (0.0007)
[21, 23) -0.59∗∗ -0.35 -0.24 -0.32∗ 0.52 0.0015

(0.29) (0.22) (0.21) (0.18) (0.39) (0.0010)
[23, 25) 0.49∗∗ 0.37∗∗ 0.12 0.01 0.29 < 0.0001

(0.21) (0.15) (0.15) (0.15) (0.28) (0.0008)
[25, 27) -0.21 -0.05 -0.16 -0.11 0.79∗∗∗ -0.0005

(0.22) (0.14) (0.17) (0.15) (0.25) (0.0007)
[27, 29) omitted category
[29, 31) 0.29∗ 0.28∗ 0.02 0.15 0.42∗ -0.0003

(0.17) (0.14) (0.13) (0.13) (0.23) (0.0006)
[31, 33) -0.29 -0.03 -0.26 -0.31∗∗ -0.11 -0.0001

(0.20) (0.13) (0.16) (0.13) (0.25) (0.0006)
≥ 33 0.09 0.05 0.04 0.16 -0.26 -0.0011∗∗

(0.18) (0.13) (0.14) (0.13) (0.22) (0.0006)

Observations 1331 1331 1331 1331 1331 1331
R-squared 0.0330 0.0347 0.0345 0.0499 0.1400 0.2863

Notes: The coefficients in this table represent the marginal effect of experiencing one more day in the respective
bin, relative to the omitted bin. Columns (1)–(5) present the coefficients in percentage points. The sample is
restricted to rural DHS clusters with an elevation less than 1000m above sea level. All regressions include controls
for: total accumulated precipitation in the previous 12 months, age, ethnicity, education, maximum temperature
on the day of the survey, and a morning-survey indicator. They also include region and month-of-survey fixed
effects. Standard errors are clustered at the DHS cluster level and shown in parentheses. The omitted temperature
bin is [27, 29)°C. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

It is worth noting, though, that the [21, 23) bin is the only positive point estimate

for household wealth, though not statistically significant even at the ten percent level.

However, assuming that household income is highly dependent on agricultural yields, this

positive effect suggests that agricultural crops benefit from temperatures in this range.

This finding aligns with crop-specific temperature sensitivities: soybeans, which comprise

almost half of the cultivated area in Bolivia’s low-altitude Santa Cruz region (Trase,

2024), are highly sensitive to temperature variation depending on their growth stage

(Alsajri, 2020). The optimal temperature for soybean cultivation is generally reported to

be 22−24◦C (Hatfield et al., 2011), which coincides closely with the [21, 23) temperature

bin where positive wealth effects are observed.
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6.2 Urban Areas

Given that urban areas are less reliant on agricultural income, the relationship between

temperature and IPV is likely to have different pathways. The results for this subgroup

of the lowlands are presented in Table 8. Columns (1)–(3) suggest that the pattern of

point estimates is consistent with the full low-altitude sample. However, cold and hot

temperature shocks impact violence differently.

Cold shocks impact the severity of IPV, which increases in the < 21 bin and de-

creases in the [21, 23) bin. This effect is directly linked to men’s alcohol consumption.

Column (5) shows that experiencing ten more days with < 21◦C temperature increases

alcohol-induced violence by 5.7 percentage points, a much larger effect than the increase

of 3.5 percentage points in severe IPV. Conversely, ten more days in the [21, 23) bin

decreases alcohol-induced IPV by 7.8 percentage points, compared to the 6.4 percentage

points decrease on severe IPV. These results suggest that the relationship between cold

temperature shocks and alcohol is a key driver of the increase in severity.

In contrast, hot temperature shocks significantly increase the incidence and the sever-

ity of IPV. Specifically, exposure to ten more days with a maximum temperature of

≥ 33◦C increases the probability of IPV by 3.2 percentage points, with 2.7 percentage

points attributed to an increase in severe types of violence. The pathways by which hot

temperature shocks affect violence are also different than those of cold shocks. Alcohol-

induced violence is not the main driver of the increase in IPV. However, ten more days in

the extremely hot bin decreases women’s labor participation and increases the likelihood

that they drink alcohol by 3.8 and 4.9 percentage points, respectively. These findings sug-

gest that an increase in temperatures in urban areas can lead to a decrease in women’s

bargaining power and inhibitions.
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Table 8: Temperature Effect in Urban Areas – Low Altitude

(1) (2) (3) (4) (5) (6)
IPV IPV Severity Partner Drunk Respondant Worked

Incidence Less Severe Severe During IPV Drinks Alcohol Last Year

< 21 (%) 0.32 -0.03 0.35∗∗ 0.57∗∗ 0.32 -0.30
(0.27) (0.19) (0.17) (0.22) (0.31) (0.27)

[21, 23) (%) -0.59 0.05 -0.64∗∗ -0.78∗∗∗ -0.59 0.45
(0.41) (0.32) (0.27) (0.26) (0.63) (0.43)

[23, 25) (%) 0.22 0.25 -0.03 0.07 0.13 0.43∗

(0.25) (0.18) (0.17) (0.16) (0.41) (0.24)
[25, 27) (%) -0.29 -0.10 -0.19 -0.16 -0.42 0.09

(0.27) (0.23) (0.17) (0.19) (0.36) (0.21)
[27, 29) omitted category
[29, 31) (%) 0.00 -0.02 0.02 -0.01 -0.15 -0.10

(0.20) (0.14) (0.16) (0.12) (0.29) (0.20)
[31, 33) (%) -0.40 -0.02 -0.38 -0.12 -0.26 0.71∗∗

(0.27) (0.22) (0.24) (0.13) (0.35) (0.32)
≥ 33 (%) 0.32∗∗ 0.05 0.27∗ 0.09 0.49∗∗ -0.38∗

(0.15) (0.14) (0.16) (0.08) (0.22) (0.22)

Observations 2145 2145 2145 2145 2144 2145
R-squared 0.0517 0.0481 0.0338 0.0291 0.0338 0.0882

Notes: The coefficients in this table represent the marginal effect in percentage points of experiencing one more
day in the respective bin, relative to the omitted bin. The sample is restricted to urban DHS clusters with an
elevation less than 1000m above sea level. All regressions include controls for: total accumulated precipitation in
the previous 12 months, age, ethnicity, education, maximum temperature on the day of the survey, and a morning-
survey indicator. They also include region and month-of-survey fixed effects. Standard errors are clustered at the
DHS cluster level and shown in parentheses. The omitted temperature bin is [27, 29)°C. ∗ p < 0.10, ∗∗ p < 0.05,
∗∗∗ p < 0.01
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6.3 Indigenous Ethnicity

Given its large indigenous population, Bolivia presents a unique opportunity to study

the differential effects of temperature shocks based on ethnicity (Canessa, 2012; World

Bank, 2015). Table 9 presents the estimated effect of temperature on IPV incidence and

severity for the indigenous and non-indigenous groups separately. The results indicate

that indigenous groups are more vulnerable to temperature shocks than non-indigenous

groups. Although the pattern of the point estimates for IPV incidence is the same for both

groups, Column (1) shows that the magnitude of the effect is larger for the indigenous

population.

Cold and hot temperature shocks seem to influence the severity of violence differently

for each population. Among the non-indigenous group, only the cold temperature bins

significantly change the likelihood of experiencing severe IPV. Meanwhile, for the indige-

nous group, cold shocks significantly affect the likelihood of experiencing less-severe forms

of IPV, and hot shocks impact severe types of violence. Such a heterogeneous effect of

temperature likely highlights the existing vulnerabilities of the indigenous population due

to cultural or economic differences.
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Table 9: Temperature Effect by Indigenous Status – Low Altitude

Panel A: Indigenous Panel B: Non-Indigenous

(1) (2) (3) (4) (5) (6)
IPV IPV Severity IPV IPV Severity

Incidence Less severe Severe Incidence Less severe Severe

< 21 (%) 0.63∗∗∗ 0.51∗∗∗ 0.12 0.17 -0.10 0.27∗∗

(0.23) (0.15) (0.16) (0.18) (0.15) (0.12)
[21, 23) (%) -0.86∗∗ -0.64∗∗ -0.22 -0.31 0.01 -0.32∗∗

(0.42) (0.27) (0.34) (0.25) (0.26) (0.16)
[23, 25) (%) 0.50∗ 0.59∗∗∗ -0.09 0.30 0.07 0.23∗∗

(0.27) (0.18) (0.17) (0.21) (0.17) (0.12)
[25, 27) (%) -0.08 -0.03 -0.04 -0.25 -0.21 -0.04

(0.31) (0.18) (0.25) (0.21) (0.18) (0.12)
[27, 29) (omitted) omitted category omitted category
[29, 31) (%) 0.41 0.37∗∗ 0.04 -0.04 -0.20 0.17

(0.26) (0.15) (0.21) (0.15) (0.14) (0.12)
[31, 33) (%) -0.33 0.20 -0.53∗∗ -0.19 -0.19 -0.01

(0.31) (0.18) (0.26) (0.21) (0.19) (0.14)
≥ 33 (%) 0.35 -0.14 0.49∗∗ 0.18 0.15 0.03

(0.24) (0.14) (0.22) (0.16) (0.14) (0.08)

Observations 1178 1178 1178 2298 2298 2298
R-squared 0.0468 0.0502 0.0350 0.0507 0.0477 0.0279

Notes: The coefficients in this table represent the marginal effect in percentage points of experiencing
one more day in the respective bin, relative to the omitted bin. The sample is restricted to DHS clusters
with an elevation less than 1000m above sea level. All regressions include controls for: total accumulated
precipitation in the previous 12 months, age, rural status, education, maximum temperature on the day
of the survey, and a morning-survey indicator. They also include region and month-of-survey fixed effects.
Standard errors are clustered at the DHS cluster level and shown in parentheses. The omitted temperature
bin is [27, 29)°C. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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7 Robustness Tests

7.1 Average Mean Temperature

In this section, I use the same empirical specification as described in equation (1),

but replace the temperature bins with the average daily mean temperature over the 12

months prior to the survey as the main independent variable. Previous literature has

found that such a measurement of temperature has a positive relationship with IPV

incidence, particularly in South Asian countries (Zhu et al., 2023). Similarly, the results

presented in Table 10 show that the average temperature has a positive relationship with

IPV incidence in the full-country and high-altitude samples. In the low-altitude sample,

however, average temperature has a negative relationship with IPV incidence, reflecting

the high impact of cold days on violence. However, the coefficients in all samples are

not statistically significant, even at the ten percent level. The findings highlight the

importance of understanding the full impact of temperature across various contexts and

groups.

Table 10: Effect of Average Mean Temperature Over Previous Year on IPV Inci-
dence

(1) (2) (3)
IPV Incidence IPV Incidence IPV Incidence

Average Daily Temp (%) 0.22 -1.22 0.80
(0.34) (1.18) (0.53)

Sample National Low Altitude High Altitude
Observations 9772 3476 6296
R-squared 0.0257 0.0326 0.0244

Notes: In this table, each column presents the point estimate for IPV incidence for dif-
ferent subsamples. The low-altitude sample includes DHS clusters with an elevation less
than 1000m above sea level. The high-altitude sample includes all remaining clusters. The
coefficients in this table represent the effect in percentage points of a 1°C increase in the
average daily mean temperature experienced over the 12 months prior to the survey inter-
view. All regressions include controls for: total accumulated precipitation in the previous
12 months, age, rural status, ethnicity, education, maximum temperature on the day of the
survey, and a morning-survey indicator. They also include region and month-of-survey fixed
effects. Standard errors are clustered at the DHS cluster level and shown in parentheses. ∗

p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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7.2 ENSO Effect 2007–2008

From November 2007 to April 2008, Bolivia was affected by La Niña, the cooler phase

of the El Niño–Southern Oscillation (ENSO). During this period, the country’s lowland

regions experienced heavy rainfall, flooding, and below-average temperatures (Global Fa-

cility for Disaster Reduction and Recovery, 2008). Additionally, in July 2007, southern

South America experienced an exceptional cold-air outbreak, which reached Bolivia and

led to unusually cold conditions in the low-altitude Amazon Basin, where minimum tem-

peratures dropped well below seasonal norms (Lanfredi and de Camargo, 2018). Thus,

to investigate whether the cold shock is the main driver of the relationship between cold

temperatures and IPV in low-altitude areas, I use the following empirical specification:

Yicm = α + β1TCOLDicm ++β2THOTicm + νPicm + η′Zicm + κc + γm + εicm (2)

TCOLDicm and THOTicm are the number of days in the 12 months prior to the survey

in which the maximum daily temperature exceeded one standard deviation (SD) below

or above the local historical average, respectively. The historical average is calculated as

the mean of all daily maximum temperatures from 1980 to 2005 for each square in the

grid. Such that β1 and β2 can be interpreted as the effect of one more abnormally cold

or hot day relative to a day within 1SD of the average. The remaining variables are kept

as specified in equation (1).

The point estimates for IPV incidence for each sample (full country, low-altitude, and

high-altitude) are presented in Table 11. Consistent with the results in equation (1),

Columns (1) and (3) show no statistically significant relationship between temperature

shocks and IPV for the full national sample and the high-altitude regions. In contrast,

Column (2) reveals that, in low altitudes, the overall effect of abnormally cold days

is positive, whereby an extra day in TCOLD leads to an increase in reported IPV of

0.6 percentage points, relative to the reference bin. Meanwhile, the point estimate for

THOT shows that an extra day with a hot temperature shock decreases the likelihood of

reported IPV by 0.3 percentage points, although statistically significant at the 10 percent
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level only. For context, the average respondent in the low-altitude regions experienced

53 days with maximum temperature more than 1SD below the historical average, and 60

days with abnormally hot temperatures (more than 1SD above the average).

Table 11: Effect of Abnormal Temperatures on IPV Incidence

(1) (2) (3)
IPV Incidence IPV Incidence IPV Incidence

TCOLD (%) 0.19 0.62∗∗ 0.04
(0.13) (0.26) (0.17)

THOT (%) -0.11 -0.28∗ 0.02
(0.09) (0.16) (0.13)

Sample National Low Altitude High Altitude
Observations 9772 3476 6296
R-squared 0.0267 0.0368 0.0237

Notes: In this table, TCOLD and THOT indicate the number of days in
the 12 months prior to the survey in which the maximum daily temperature
exceeded one standard deviation (SD) below or above the local historical aver-
age, respectively. The omitted temperature bin is [-1, 1] standard deviations
away from the historical average. The coefficients represent the marginal
effect in percentage points of experiencing one more day in the respective
bin, relative to the omitted bin. The sample is restricted to women currently
partnered and have lived at their current location for at least one year. All
regressions include controls for: total accumulated precipitation in the previ-
ous 12 months, age, rural status, ethnicity, education, maximum temperature
on the day of the survey, and a morning-survey indicator. They also include
region and month-of-survey fixed effects. Standard errors are clustered at
the DHS cluster level and shown in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗

p < 0.01

Despite the non-monotonic pattern presented in Table 2, with the two extreme bins

in the cold and hot temperatures having opposite effects, the results in Table 10 are

evidence that abnormally cold days have an overall positive effect on IPV incidence and

abnormally hot days have a negative effect in low altitudes. Additionally, Table 12 shows

that the abnormally cold days significantly impacted different mechanisms. Experiencing

extra TCOLD days increases the likelihood that the partner was drunk during the IPV

events, while lowering women’s bargaining power due to reduced agricultural employment

and relative earnings. On the other hand, of the mechanisms explored, only men’s alcohol

consumption is a key driver of the decrease in IPV incidence due to experiencing more

THOT days.
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Table 12: Mechanisms Using Z-score Anomalies - Low Altitude

(1) (2) (3) (4) (5)
IPV Partner drunk Worked: Agric Earns ≥ partner’s Decision-making

Incidence during IPV Self-employed earnings Index
(%) (%) (%) (%)

TCOLD (%) 0.62∗∗ 0.46∗∗ -0.47∗ -0.61∗ -2.95∗∗∗

(0.26) (0.21) (0.25) (0.31) (0.86)
THOT (%) -0.28∗ -0.24∗∗ -0.27 0.10 -0.50

(0.16) (0.10) (0.18) (0.20) (0.56)

Observations 3476 3476 3476 3476 3476
R-squared 0.0368 0.0223 0.2377 0.0991 0.0712

Notes: In this table, TCOLD and THOT indicate the number of days in the 12 months prior to the survey in
which the maximum daily temperature exceeded one standard deviation (SD) below or above the local historical
average, respectively. The omitted temperature bin is [-1, 1] standard deviations away from the historical average.
The coefficients represent the marginal effect of experiencing one more day in the respective bin, relative to the omitted
bin. Columns (1)–(4) present the coefficients in percentage points. The sample is restricted to DHS clusters with an
elevation less than 1000m above sea level. All regressions include controls for: total accumulated precipitation in the
previous 12 months, age, rural status, ethnicity, education, maximum temperature on the day of the survey, and a
morning-survey indicator. They also include region and month-of-survey fixed effects. Standard errors are clustered
at the DHS cluster level and shown in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

7.3 Probit Specification

While my primary specification employs an Ordinary Least Squares (OLS) approach

(Linear Probability Model, LPM), some authors advocate using nonlinear probability

models, such as probit, for a binary dependent variable. The main concerns with using

an LPM are that: (1) predicted values are not constrained to lie within the [0,1] interval,

which may lead to nonsensical probability predictions in some cases; and, (2) the model

inherently exhibits heteroskedasticity due to the binary nature of the outcome variable,

which can result in biased standard errors if not corrected using robust or clustered

variance estimators.

While the second concern is mitigated using clustered standard errors, I examine the

predicted probabilities from my LPM specification to address the first concern empirically.

None of the predicted probabilities exceed 1, and only about 0.2% of predictions fall below

0. With such a small proportion of predicted probabilities outside the unit interval, it is

unlikely that the estimates are substantially biased (Friedman, 2012). Nonetheless, as a

robustness check, I replicate my main analysis using a probit model for the incidence of

IPV and each of its dimensions. Table 13 presents marginal effects derived from the probit

regression for the low-altitude sample. The direction, magnitude, and significance of the

estimated coefficients remain consistent across both modeling approaches, reinforcing the
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robustness of the original findings.

Given that the LPM predicted values remain predominantly within the valid probabil-

ity range and that robust standard errors are employed to correct for heteroskedasticity,

the practical advantages of using probit diminish significantly. Conversely, as articulated

by Friedman (2012), the LPM provides straightforward, easily interpretable coefficients

directly representing percentage-point changes in probability, facilitating clearer commu-

nication of results. Additionally, probit and logit models impose specific distributional

assumptions of the error term, which, if incorrectly specified, can lead to significant bi-

ases (Friedman, 2012). The close alignment between the probit and LPM results provides

strong support for maintaining OLS as the preferred specification in my analysis.

Table 13: Marginal Effects of Temperature on IPV Dimensions Using Probit Re-
gression – Low Altitude

(1) (2) (3) (4) (5) (6)
IPV IPV Severity IPV Frequency Psychological

Incidence Less severe Severe Sometimes Often Abuse

< 21 (%) 0.37∗∗∗ 0.17 0.20∗∗ 0.42∗∗∗ -0.09 0.31∗

(0.14) (0.10) (0.10) (0.13) (0.06) (0.17)
[21, 23) (%) -0.65∗∗∗ -0.36∗∗ -0.32∗ -0.49∗∗ -0.14 -0.43∗

(0.22) (0.18) (0.18) (0.23) (0.08) (0.25)
[23, 25) (%) 0.35∗∗ 0.26∗∗ 0.09 0.46∗∗∗ -0.10 0.36∗

(0.16) (0.11) (0.11) (0.15) (0.08) (0.19)
[25, 27) (%) -0.20 -0.17 -0.04 -0.05 -0.19∗∗∗ -0.06

(0.16) (0.13) (0.12) (0.17) (0.07) (0.17)
[27, 29) (%) omitted category
[29, 31) (%) 0.13 0.02 0.10 0.28∗∗ -0.17∗∗∗ 0.30∗

(0.14) (0.10) (0.11) (0.14) (0.05) (0.17)
[31, 33) (%) -0.30∗ -0.05 -0.25∗ -0.13 -0.20∗∗∗ 0.10

(0.17) (0.14) (0.13) (0.17) (0.07) (0.18)
≥ 33 (%) 0.24∗∗ 0.02 0.21∗∗ 0.29∗∗ -0.05 0.20

(0.11) (0.10) (0.10) (0.12) (0.05) (0.15)

Observations 3476 3467 3476 3476 3467 3476

Notes: The coefficients in this table represent the marginal effect in percentage points of experiencing
one more day in the respective bin, relative to the omitted bin. The sample is restricted DHS clusters
with an elevation less than 1000m above sea level. All regressions use a probit specification and include
controls for: total accumulated precipitation in the previous 12 months, age, rural status, ethnicity,
education, maximum temperature on the day of the survey, and a morning-survey indicator. They also
include region and month-of-survey fixed effects. Standard errors are clustered at the DHS cluster level
and shown in parentheses. The omitted temperature bin is [27, 29)°C. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗

p < 0.01
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8 Conclusion

This paper presents new evidence on the effects of recent temperature shocks on inti-

mate partner violence (IPV), emphasizing both the nonlinear nature of the relationship

and its heterogeneity across populations. While the short-term impact of temperature on

violence has been studied extensively (Blakeslee et al., 2021; Evans et al., 2025; Hsiang

et al., 2013; Mukherjee and Sanders, 2021; Sanz-Barbero et al., 2018), analysis of the

longer-lasting effects has been limited. The literature has found that hot temperatures

have direct effects, such as psychological and physiological changes, increased irritability,

temperament changes, and cognitive function decline (Almås et al., 2025; Baylis, 2020;

Stechemesser et al., 2022). However, we should expect that the effects of temperature

shocks over the preceding year are indirect, operating through socioeconomic channels.

Thus, sustained exposure to temperature extremes is likely to disproportionately affect

vulnerable groups of the population, such as rural and indigenous women.

Using self-reported IPV data from the 2008 Bolivian DHS, matched with high-resolution

daily climate data, I estimate the cumulative effect of temperature exposure over the 12

months preceding the survey. This strategy allows me to capture sustained changes rather

than short-lived fluctuations. Bolivia’s distinct topography creates wide variation in cli-

mate across regions: the highlands experience cooler and more stable temperatures, while

the lowlands are exposed to both extreme heat and occasional cold fronts. To account

for these differences in climatic adaptation, I estimate separate models for low- and high-

altitude areas. The results show that the relationship between temperature and IPV

is strongly influenced by de-adaptation to atypical temperatures: in low-altitude areas,

ten additional days below 21◦C or above 33◦C significantly increase IPV incidence, while

moderate cold temperatures ([21, 23)◦C) appear protective. In contrast, high-altitude

areas exhibit no statistically significant effects, consistent with their narrower range of

temperature variation.

Due to its geographical location, Thus, the national results mask important hetero-

geneity in the effect of temperatures, as different populations are accustomed to and

adapted to different climates. Dividing the sample into low-altitude and high-altitude ar-
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eas reveals that the effect of temperature on IPV is strongly influenced by de-adaptation

to atypical temperatures. In low-altitude areas, where populations were exposed to both

cold and heat shocks, IPV increases with temperature deviations in both directions: ten

additional days below 21◦C or above 33◦C raise IPV incidence significantly, while mod-

erate cold shocks ([21, 23)◦C) appear protective. By contrast, high-altitude areas show

no significant effects, likely due to having less exposure to extreme temperature shocks.

Even within low altitudes, the effects of temperature shocks and the mechanisms

behind them differ by temperature type and population group. Extremely cold shocks

are associated with increased IPV incidence in rural and indigenous households, likely

driven by male alcohol consumption and income shocks, including shifts from formal or

non-agricultural labor to informal agricultural work. In urban areas, both extreme cold

and hot temperatures increase the incidence and severity of IPV. For these areas, the effect

of cold temperatures appears to be positively related to men’s alcohol consumption. Hot

shocks, meanwhile, decrease the likelihood that women work and increase the likelihood

that they drink alcohol, which could result in more contentious interactions between the

couple.

These findings underscore the need for gender-sensitive climate adaptation policies,

particularly in countries with high IPV prevalence, weak legal protections of women’s

rights, and high vulnerability to climate change. As both hot and cold temperature

extremes become more frequent with phenomena such as La Niña and El Niño, the

long-term social costs will increasingly burden women, especially those in marginalized

groups. To effectively meet the goals of SDG 5.2, interventions must account for both the

climatic and socioeconomic dimensions of IPV risk: improving resilience through diversi-

fied income sources, targeted alcohol abuse prevention, and community-based awareness

programs that reflect local vulnerabilities. This study highlights that climate change is

not just an environmental or economic issue, but also a gendered social one, with last-

ing consequences for women’s safety and autonomy. This understanding is critical for

estimations of the cost of climate change on economic growth and for designing public

policies to prevent and reduce partner abuse, especially in developing and less developed

41



countries.
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A Additional Tables

Table A.1: Balance Check – Low Altitude

(1) (2) (3) (4) (5) (6)
Age Height Years of Indigenous Parental Age at first

(years) (cms) schooling Ethnicity IPV marriage (in years)

< 21 0.027 -0.024 -0.005 0.003 0.003 0.005
(0.027) (0.024) (0.021) (0.002) (0.002) (0.016)
[1.000] [1.000] [1.000] [1.000] [1.000] [1.000]

[21, 23) 0.004 0.009 0.014 -0.004 -0.007∗∗ 0.058∗∗

(0.051) (0.044) (0.032) (0.004) (0.003) (0.026)
[1.000] [1.000] [1.000] [1.000] [0.429] [0.429]

[23, 25) 0.033 0.027 0.019 0.000 0.001 0.005
(0.031) (0.023) (0.023) (0.003) (0.002) (0.018)
[1.000] [1.000] [1.000] [1.000] [1.000] [1.000]

[25, 27) 0.016 -0.022 0.006 0.000 -0.002 0.029
(0.030) (0.030) (0.022) (0.002) (0.002) (0.021)
[1.000] [1.000] [1.000] [1.000] [1.000] [1.000]

[27, 29) omitted category
[29, 31) 0.005 -0.010 -0.008 -0.001 0.001 0.019

(0.027) (0.023) (0.021) (0.002) (0.002) (0.018)
[1.000] [1.000] [1.000] [1.000] [1.000] [1.000]

[31, 33) -0.006 0.006 0.020 -0.005 -0.004∗∗ 0.043∗∗

(0.046) (0.032) (0.027) (0.003) (0.002) (0.020)
[1.000] [1.000] [1.000] [1.000] [0.518] [0.429]

≥ 33 0.031 -0.009 -0.007 0.007∗∗∗ 0.002 -0.023
(0.034) (0.027) (0.019) (0.002) (0.002) (0.015)
[1.000] [1.000] [1.000] [0.087] [1.000] [1.000]

Observations 3476 3426 3476 3476 3280 3476
R-squared 0.010 0.068 0.154 0.137 0.021 0.045

Notes: The coefficients in this table represent the marginal effect of experiencing one more day in the
respective bin, relative to the omitted bin. The sample is restricted to DHS clusters with an elevation
less than 1000m above sea level. All regressions include controls for: total accumulated precipitation in the
previous 12 months, maximum temperature on the day of the survey, and a morning-survey indicator. They
also include region and month-of-survey fixed effects. Standard errors are clustered at the DHS cluster level
and shown in parentheses. The omitted temperature bin is [27, 29)°C. Anderson (2008) sharpened False
Discovery Rate (FDR) q-values are reported for the temperature bins in square brackets. ∗ p < 0.10, ∗∗

p < 0.05, ∗∗∗ p < 0.01
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Table A.2: Balance Check – High Altitude

(1) (2) (3) (4) (5) (6)
Age Height Years of Indigenous Parental Age at first

(years) (cms) schooling Ethnicity IPV marriage (in years)

< 11 -0.005 0.002 -0.001 0.000 0.001 -0.004
(0.008) (0.006) (0.007) (0.000) (0.001) (0.005)
[1.000] [1.000] [1.000] [1.000] [1.000] [1.000]

[11, 13) 0.002 0.004 0.009∗ -0.001∗∗ 0.000 0.001
(0.006) (0.005) (0.005) (0.000) (0.000) (0.004)
[1.000] [1.000] [1.000] [1.000] [1.000] [1.000]

[13, 15) -0.014 0.003 0.000 0.000 0.001 -0.008
(0.012) (0.009) (0.010) (0.001) (0.001) (0.007)
[1.000] [1.000] [1.000] [1.000] [1.000] [1.000]

[15, 17) omitted category
[17, 19) -0.013 0.002 0.004 -0.001 0.001 -0.012

(0.012) (0.010) (0.011) (0.001) (0.001) (0.008)
[1.000] [1.000] [1.000] [1.000] [1.000] [1.000]

[19, 21) -0.003 0.007 0.010 0.000 0.000 0.009∗

(0.009) (0.006) (0.007) (0.000) (0.001) (0.005)
[1.000] [1.000] [1.000] [1.000] [1.000] [1.000]

≥ 21 -0.007 0.004 0.005 -0.001 0.000 -0.007
(0.007) (0.005) (0.006) (0.000) (0.000) (0.005)
[1.000] [1.000] [1.000] [1.000] [1.000] [1.000]

Observations 6296 6144 6296 6296 5811 6296
R-squared 0.010 0.038 0.166 0.178 0.014 0.025

Notes: The coefficients in this table represent the marginal effect of experiencing one more day in the
respective bin, relative to the omitted bin. The sample is restricted DHS clusters with an elevation greater
than 1000m above sea level. All regressions include controls for: total accumulated precipitation in the
previous 12 months, maximum temperature on the day of the survey, and a morning-survey indicator. They
also include region and month-of-survey fixed effects. Standard errors are clustered at the DHS cluster level
and shown in parentheses. The omitted temperature bin is [27, 29)°C. Anderson (2008) sharpened False
Discovery Rate (FDR) q-values are reported for the temperature bins in square brackets. ∗ p < 0.10, ∗∗

p < 0.05, ∗∗∗ p < 0.01
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Table A.3: Balance Test: Exogeneity of Interview Timing to Respondent Charac-
teristics – Low Altitude

(1) (2) (3) (4) (5) (6)
Age Height Years of Indigenous Parental Years lived

(years) (cms) schooling Ethnicity IPV in residence

Days since first survey 0.015 0.024 0.016 <-0.001 <0.001 -0.012
(0.025) (0.021) (0.018) (0.002) (0.002) (0.047)

Observations 3479 3429 3479 3479 3283 3463
R-squared 0.0051 0.0578 0.1416 0.1231 0.0155 0.0259

Notes: The coefficients in this table represent the marginal effect of being interviewed one day later. The
sample is restricted to DHS clusters with an elevation less than 1000m above sea level. All regressions include
region and month-of-survey fixed effects. Standard errors are clustered at the DHS cluster level and shown in
parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table A.4: Balance Test: Exogeneity of Interview Timing to Respondent Charac-
teristics – High Altitude

(1) (2) (3) (4) (5) (6)
Age Height Years of Indigenous Parental Years lived

(years) (cms) schooling Ethnicity IPV in residence

Days since first survey -0.0174 -0.0022 -0.0359∗∗∗ 0.0007 -0.0007 -0.0073
(0.0166) (0.0130) (0.0133) (0.0010) (0.0010) (0.0379)

Observations 6309 6156 6309 6309 5824 6251
R-squared 0.0068 0.0359 0.1608 0.1701 0.0111 0.0129

Notes: The coefficients in this table represent the marginal effect of being interviewed one day later. The
sample is restricted to DHS clusters with an elevation greater than 1000m above sea level. All regressions include
region and month-of-survey fixed effects. Standard errors are clustered at the DHS cluster level and shown in
parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table A.5: Moran’s I Test for Spatial Autocorrelation in Regression Residuals
(Low-Altitude Sample)

IPV Dimension Radius (km) Moran’s I p (Normal) p (Permutation)

IPV Incidence 100 −0.042 0.186 0.074
150 −0.034 0.232 0.102
200 −0.030 0.255 0.130

Less Severe IPV 100 −0.016 0.668 0.353
150 −0.012 0.706 0.385
200 −0.011 0.726 0.399

Severe IPV 100 −0.034 0.543 0.257
150 −0.012 0.725 0.399
200 −0.011 0.726 0.399

IPV Sometimes 100 −0.009 0.820 0.431
150 −0.007 0.870 0.448
200 −0.006 0.893 0.458

IPV Often 100 −0.035 0.283 0.140
150 −0.043 0.115 0.032
200 −0.041 0.114 0.034

Psychological IPV 100 −0.021 0.530 0.261
150 −0.013 0.688 0.351
200 −0.007 0.871 0.466

Number of clusters 308

Notes: Moran’s I tests are computed on cluster-level residuals from the low-altitude regressions using
inverse-distance weights and 999 random permutations. The 50 km radius is excluded because approxi-
mately 5% of clusters have no spatial neighbors. Non-significant results (p > 0.10) indicate no evidence
of global spatial autocorrelation.
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B National Results

B.1 Endogeneity of Temperature At the National Level

Table B.1 shows that, at the national level, the temperature bins are uncorrelated with

age, height, and parental IPV. However, the hottest bin, ≥ 33◦C, is significantly correlated

with more years of education and a higher likelihood of having indigenous ethnicity.

Also, the colder temperature bins are significantly correlated with indigenous ethnicity.

These results show that, at the national level, exposure to certain temperatures is not

exogenous. This finding is expected, as Table 1 shows that the low- and high-altitude

samples experience different temperatures and are significantly different demographically.

B.2 Temperature Effects on IPV Using National Sample

The point estimates for IPV Incidence are shown in Figure B.1. While most coeffi-

cients are positive, none of them are statistically significant even at the 10 percent level.

That is, I find no evidence that temperature affected IPV occurrences over the preceding

year, which is contrary to the current literature on heat and violence in the short term

(Blakeslee et al., 2021; Henke and Hsu, 2020; Ranson, 2014). A possible explanation is

that violent acts arising from contemporaneous shocks, such as an increase in tempera-

ture, are offset by less violence on other days. For example, previous studies have found

evidence of a somewhat offsetting decline in violent crime in the weeks after a temperature

shock (Jacob et al., 2007; Cohen and Gonzalez, 2024).
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Table B.1: Balance Check – Full Country

(1) (2) (3) (4) (5) (6)
Age Height Years of Indigenous Parental Age at first

(years) (cms) schooling Ethnicity IPV marriage (in years)

< 11 0.015 0.006 0.003 0.002∗ 0.001 0.010
(0.011) (0.008) (0.009) (0.001) (0.001) (0.007)
[1.000] [1.000] [1.000] [1.000] [1.000] [1.000]

[11, 13) 0.021∗ 0.007 0.014 0.001 0.000 0.014∗

(0.011) (0.009) (0.010) (0.001) (0.001) (0.008)
[1.000] [1.000] [1.000] [1.000] [1.000] [1.000]

[13, 15) 0.005 0.004 0.001 0.002∗∗ 0.001 0.004
(0.012) (0.009) (0.010) (0.001) (0.001) (0.008)
[1.000] [1.000] [1.000] [1.000] [1.000] [1.000]

[15, 17) 0.020 0.004 0.005 0.002∗ 0.000 0.013
(0.013) (0.010) (0.010) (0.001) (0.001) (0.009)
[1.000] [1.000] [1.000] [1.000] [1.000] [1.000]

[17, 19) 0.003 0.001 0.003 0.001 0.001 -0.002
(0.009) (0.009) (0.009) (0.001) (0.001) (0.006)
[1.000] [1.000] [1.000] [1.000] [1.000] [1.000]

[19, 21) 0.022 0.015 0.021 0.002 0.001 0.025∗

(0.019) (0.014) (0.015) (0.001) (0.001) (0.013)
[1.000] [1.000] [1.000] [1.000] [1.000] [1.000]

[21, 23) omitted category
[23, 25) 0.013 0.008 0.012 0.002 0.001 0.003

(0.021) (0.017) (0.017) (0.002) (0.001) (0.014)
[1.000] [1.000] [1.000] [1.000] [1.000] [1.000]

[25, 27) 0.026∗ 0.004 0.015 -0.001 0.000 0.018∗

(0.015) (0.013) (0.011) (0.001) (0.001) (0.010)
[1.000] [1.000] [1.000] [1.000] [1.000] [1.000]

[27, 29) -0.004 0.015 0.012 0.002 0.001 -0.001
(0.018) (0.015) (0.014) (0.001) (0.001) (0.012)
[1.000] [1.000] [1.000] [1.000] [1.000] [1.000]

[29, 31) 0.006 -0.004 -0.007 0.000 0.002 0.010
(0.017) (0.013) (0.017) (0.002) (0.001) (0.013)
[1.000] [1.000] [1.000] [1.000] [1.000] [1.000]

[31, 33) 0.022 0.006 -0.008 -0.001 -0.001 0.036∗∗∗

(0.037) (0.021) (0.020) (0.002) (0.001) (0.014)
[1.000] [1.000] [1.000] [1.000] [1.000] [1.000]

≥ 33 0.003 0.020 0.051∗∗∗ 0.005∗∗ 0.001 -0.021
(0.038) (0.021) (0.018) (0.002) (0.002) (0.014)
[1.000] [1.000] [1.000] [1.000] [1.000] [1.000]

Observations 9772 9570 9772 9772 9091 9772
R-squared 0.012 0.074 0.159 0.275 0.015 0.045

Notes: The coefficients in this table represent the marginal effect of experiencing one more day in the
respective bin, relative to the omitted bin. All regressions include controls for: total accumulated precipi-
tation in the previous 12 months, maximum temperature on the day of the survey, and a morning-survey
indicator. They also include region and month-of-survey fixed effects. Standard errors are clustered at the
DHS cluster level and shown in parentheses. The omitted temperature bin is [27, 29)°C. Anderson (2008)
sharpened False Discovery Rate (FDR) q-values are reported for the temperature bins in square brackets.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Figure B.1: Estimated Effect of Temperature on IPV Incidence

Notes: Dots show the coefficients estimated using equation (1); lines are 95% CI with SEs

clustered at the DHS cluster level. Coefficients are scaled by 100 (percentage points) and

represent the marginal effect of one extra day in each 2◦C bin relative to the omitted bin

[21, 23)◦C. Controls include 12-month precipitation, age, rural status, ethnicity, education,

survey-day max temperature, and morning-survey indicator. Region and month fixed effects

were also included.

To explore any possible temporal displacement in IPV, I run equation (1) on the two

frequency variables: often and sometimes. Figure B.2 shows the point estimates for each

variable. Most of the coefficients on the variable often are negative and statistically

significant, indicating that exposure to more days in the hotter or colder bins (relative

to the reference bin) has a significant negative effect on the likelihood that a woman

experiences IPV often. In contrast, most of the coefficients on the variable sometimes are

positive, though not statistically significant. The results of these two variables together

suggest that the IPV induced by temperature shocks is offset in later periods, such that

the overall effect is a decrease in the frequency of violence, but not in its prevalence.
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Figure B.2: Estimated Effect of Temperature on IPV Frequency

Notes: Dots show the coefficients estimated using equation (1); lines are 95% CI with SEs

clustered at the DHS cluster level. Coefficients are scaled by 100 (percentage points) and

represent the marginal effect of one extra day in each 2◦C bin relative to the omitted bin

[21, 23)◦C. Controls include 12-month precipitation, age, rural status, ethnicity, education,

survey-day max temperature, and morning-survey indicator. Region and month fixed effects

were also included.

Besides having an effect on the frequency of IPV, temperature could also affect other

aspects of intimate partner mistreatment, such as IPV severity and psychological abuse.

The estimates for these outcome variables are presented in Table B.2. Columns (1) and

(2) show no evidence that temperature has a significant effect on the severity of IPV

occurrences. Only the coefficient for severe IPV in the [31, 33) bin shows a statistically

significant negative effect. Exchanging ten extra days in the reference bin for days with

a maximum temperature in the [31, 33) range lowers severe IPV by 2.2 percentage points

(p-value < 0.10). While the decrease in the experience of severe IPV is not linked to

an increase in less-severe acts of IPV, it seems to be related to a statistically significant

increase in psychological abuse. The point estimates presented in column (7) for bins

[29, 31) and [31, 33) indicate a significant increase in psychological abuse of 2.8 percentage

points and 2.7 percentage points, respectively, for an extra ten days in each range. These
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results suggest that additional exposure to hot days may affect the severity and type of

abuse women are subjected to.

Table B.2: Temperature Effect IPV Severity

(1) (2) (3) (4)
IPV IPV Severity Psychological

Incidence Less severe Severe Abuse

< 11 (%) 0.06 0.08 -0.02 0.08
(0.07) (0.05) (0.06) (0.08)

[11, 13) (%) 0.03 0.06 -0.03 0.06
(0.07) (0.06) (0.06) (0.08)

[13, 15) (%) 0.04 0.06 -0.02 0.07
(0.08) (0.06) (0.07) (0.08)

[15, 17) (%) 0.07 0.08 -0.01 0.09
(0.08) (0.06) (0.07) (0.09)

[17, 19) (%) 0.02 0.04 -0.03 0.01
(0.06) (0.05) (0.05) (0.06)

[19, 21) (%) 0.17 0.15 0.01 0.23∗

(0.14) (0.10) (0.12) (0.12)
[21, 23) omitted category
[23, 25) (%) 0.06 0.09 -0.03 0.17

(0.13) (0.10) (0.10) (0.14)
[25, 27) (%) 0.03 0.05 -0.02 0.07

(0.09) (0.07) (0.07) (0.09)
[27, 29) (%) 0.01 0.04 -0.02 -0.03

(0.10) (0.08) (0.10) (0.12)
[29, 31) (%) 0.14 0.08 0.06 0.28∗∗

(0.10) (0.08) (0.11) (0.12)
[31, 33) (%) -0.18 0.04 -0.22∗ 0.27∗∗

(0.14) (0.10) (0.12) (0.13)
≥ 33 (%) 0.22 0.07 0.14 -0.00

(0.13) (0.09) (0.12) (0.15)

Observations 9772 9772 9772 9772
R-squared 0.0297 0.0188 0.0163 0.0305

Notes: The coefficients in this table represent the marginal effect in percent-
age points of experiencing one more day in the respective temperature bin,
relative to the omitted bin. All regressions include controls for: total accu-
mulated precipitation in the previous 12 months, age, rural status, ethnicity,
education, maximum temperature on the day of the survey, and a morning-
survey indicator. They also include region and month-of-survey fixed effects.
Standard errors are clustered at the DHS cluster level and shown in paren-
theses. The omitted temperature bin is [21, 23)°C. ∗ p < 0.10, ∗∗ p < 0.05,
∗∗∗ p < 0.01

Nonetheless, substantial climatic differences between low- and high-altitude areas may

complicate the interpretation of these results. According to Figure 2, a day with maxi-

mum temperature in the chosen reference bin of [21, 23) is a very hot day that is rarely

experienced by the average individual in high-altitude areas. Yet, it is a moderately cold

day for those living in low-altitude areas. Therefore, the point estimates from the full-

country sample may obscure the heterogeneous effects of temperature and its associated
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mechanisms.
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